Ajuste del modelo AquaCrop en maíz con diferentes niveles de riego en condiciones de clima templado del sur de Uruguay

Autores/as

DOI:

https://doi.org/10.31285/AGRO.27.1185

Palabras clave:

riego deficitario, simulación cultivos, Zea mays, clima húmedo

Resumen

El modelo AquaCrop permite evaluar y diseñar estrategias de riego que mejoren el uso del agua de riego. El objetivo del presente trabajo fue ajustar el modelo AquaCrop para el cultivo de maíz a las condiciones climáticas del sur de Uruguay, con diferentes manejos del agua de riego. Se calibró y validó este modelo para maíz utilizando datos experimentales de ensayos de riego con diferentes niveles deficitarios, en tres temporadas: 2015-16 y 2016-17 (calibración) y 2014-15 (validación). Se evaluaron tres láminas máximas de reposición: 3, 6 y 9 mm día-1, y secano (solo precipitaciones). El cultivo fue parametrizado para las condiciones locales y se ajustaron los coeficientes de estrés hídrico. La calibración simuló bien el rendimiento, la biomasa y la humedad del suelo en los tratamientos regados. Todos los índices estadísticos utilizados para evaluar el modelo indicaron un buen ajuste entre datos observados y simulados, a excepción del coeficiente de eficiencia del modelo de Nash-Sutcliffe (EF). En el secano, el modelo subestimó el rendimiento (EF de -0,52), cuando la profundidad radical se limitó a 0,7 m. Sin embargo el suelo del ensayo permitía una mayor exploración radical que la utilizada inicialmente. Con 0,90 m de profundidad, el modelo simuló bien el rendimiento del secano, principalmente en el año seco (EF de 0,79). El modelo predice el rendimiento con buen ajuste en diferentes situaciones de riego y precipitaciones si se ajustan los coeficientes de estrés y el cultivo es parametrizado en forma adecuada, principalmente la profundidad de raíces.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

Abedinpour M, Sarangi A, Rajput TBS, Singh M. Prediction of maize yield under future water availability scenarios using the AquaCrop model. J Agric Sci. 2014;152(4):558-74. Doi: 10.1017/S0021859614000094.

Abedinpour M, Sarangi A, Rajput TBS, Singh M, Pathak H, Ahmad T. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agric Water Manag. 2012;110:55-66. Doi: 10.1016/j.agwat.2012.04.001.

Allen RG, Pereira LS, Raes D, Smith M. Crop evapotranspiration. guidelines for computing crop water requirements. Rome: FAO; 1998. 300p.

Bachino F. Análisis de costos y rentabilidades en riego por aspersión. In: Riego en cultivos y pasturas. 2do Seminario Internacional. Montevideo: INIA; 2012. pp. 83-97.

Barros VR, Field CR, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL,editors. Climate Change 2014: Impacts, adaptation, and vulnerability: Part B. regional aspects. New York: Cambridge University Press; 2014. 688p.

Bernardo S, Soares AA, Mantovani EC. Manual de irrigaçao. 7a ed. Viçosa: Universidad Federal de Viçosa; 2005. 611p.

Clemente G. Modelamiento del rendimiento de maíz (Zea mays L.) e impacto económico ante escenarios futuros de cambio climático usando AquaCrop [grade’s thesis]. El Mantaro (PE): Universidad Nacional del centro del Perú, Facultad de Agronomía; 2020. 284p.

FAO. AQUASTAT Dissemination System [Internet]. Rome: FAO; c2021 [cited 2023 Oct 05]. Available from: https://www.fao.org/aquastat/statistics/query/index.html;jsessionid=CC7831C02D6B731966AAC9A1A76C2255

Fassio A, Carriquiry A, Tojo C, Romero R. Maíz: aspectos sobre su fenología. Montevideo: INIA; 1998. 51p.

Fereres E, Soriano MA. Deficit irrigation for reducing agricultural water use. J Exp Bot. 2007;58(2):147-59.

García Petillo M, Puppo L, Hayashi R, Morales P. Metodología para determinar los parámetros hídricos de un suelo a campo [Internet]. [place unknown: publisher unknown]; 2012. 10p. Available from: https://bit.ly/3rEWdPy

Giménez L. AquaCrop model evaluation in maize under different water availabilities in the western of Uruguay. Int J Plant Animal Env Sci. 2019;9(2):103-17. Doi: 10.21276/ijpaes.

Hayashi R, Dogliotti S. Water productivity in maize, at different levels of deficit irrigation in humid climate. Agrocienc Urug. 2021;25(1):e390. Doi: 10.31285/agro.25.390.

Hoffman GJ, Evans RG, Jensen ME, Elliot RL. Desing and operation of farm irrigation systems. 2nd ed. St. Joseph: ASABE; 2007. 862p.

Hsiao TC, Heng L, Steduto P, Rojas-Lara B, Raes D, Fereres E. AquaCrop - the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron J. 2009;101:448-59.

INASE; INIA. Resultados experimentales de la evaluación nacional de cultivares de Maíz para grano y maíz para silo: período 2014. Uruguay: INASE; 2015. 50p.

Jamieson PD, Porter JR, Wilson DR. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Res. 1991;27(4):337-50. Doi: 10.1016/0378-4290(91)90040-3.

Ministerio de Ganadería, Agricultura y Pesca, DIEA (UY). Anuario estadístico agropecuario 2019. Montevideo: MGAP; 2019. 256p.

Molfino JH, Califra A. Agua disponible de las tierras del Uruguay: segunda aproximación [Internet]. [place unknown: publisher unknown]; 2001 [cited 2023 Oct 05]. 13p. Available from: https://bit.ly/3DtUJsm

Naciones Unidas. La economía del cambio climático en América Latina y el Caribe[Internet]. Santiago de Chile: UN; 2010 [cited 2023 Oct 05]. 113p. Available from: https://bit.ly/3F2CMTZ

Nash JE, Sutcliffe JV. River flow forecasting through conceptual models: Part 1. A discussion of principles. J Hydrol. 1970;10(3):282-90.

Pereira LS, Allen RG. Crop water requirements. In: van Lier HN, Pereira LS, Steiner FR, editors. CIGR Handbook of Agricultural Engineering. Vol I, Land and water engineering. St. Joseph: ASAE; 1999. pp. 213-62.

PNA AGRO: Plan Nacional de Adaptación a la Variabilidad y el Cambio Climático para el Sector Agropecuario [Internet]. [place unknown]: MGAP; 2019 [cited 2023 Oct 05]. 125p. Available from: https://bit.ly/48DMutr

Raes D, Steduto P, Hsiao TC, Fereres E. AquaCrop - The FAO crop model to simulate yield response to water: II. main algorithms and software description. Agron J. 2009;101(3):438-47.

Raes D, Steduto P, Hsiao TC, Fereres E. Reference manual: AquaCrop version 4.0. Rome: FAO; 2012. 3v.

Ran H, Kang S, Li F, Du T, Tong L, Li S, Ding R, Zhang X. Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China. Agric Water Manag. 2018;203:438-50. Doi: 10.1016/j.agwat.2018.01.030.

Ritchie SW, Hanway JJ. How a corn plant develops. Iowa: Iowa State University of Science and Technology; 1982. 21p.

Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM. Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc. 2001;37(5):1169-88.

Steduto P, Hsiao TS, Fereres E, Raes D. Respuesta del rendimiento de los cultivos al agua. Roma: FAO; 2012. 510p.

Steduto P, Raes D, Hsiao TS. Concepts and applications of AquaCrop: the FAO crop water productivity model. In: Cao W, White JW, Wang E, editors. Crop modelling and decision support. Berlin: Springer; 2009. pp. 175-91.

Tarjuelo JM. El riego por aspersión y su tecnología. 3a ed. Madrid: Mundi-Prensa; 2005. 591p.

Willmott CJ. Some comments on the evaluation of model performance. Bull Am Meteorol Soc. 1982;63:1309-13.

Descargas

Publicado

2024-02-06

Cómo citar

1.
Hayashi R, Dogliotti S. Ajuste del modelo AquaCrop en maíz con diferentes niveles de riego en condiciones de clima templado del sur de Uruguay. Agrocienc Urug [Internet]. 6 de febrero de 2024 [citado 6 de julio de 2024];27(NE1):e1185. Disponible en: http://mail.revista.asocolderma.org.co/index.php/agrociencia/article/view/1185

Número

Sección

Irrigation and water management
QR Code

Métricas

Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas

Artículos más leídos del mismo autor/a

1 2 > >>