Efecto de la inclusión en dieta de Ceratophyllum demersum crudo y fermentado sobre el desempeño del crecimiento y la digestibilidad en juveniles de carpa herbívora, Ctenopharyngodon Idella Val.

Autores/as

DOI:

https://doi.org/10.31285/AGRO.28.1201

Palabras clave:

carpa herbívora, fermentación, macrófitas, hornwort, digestibilidad

Resumen

Se llevó a cabo un experimento de alimentación de 12 semanas para evaluar el rendimiento del crecimiento, la eficiencia alimenticia, la digestibilidad y la composición de la canal de juveniles de carpa herbívora Ctenopharyngodon idella (Val, 1844) (4,03 ± 0,16 g) alimentados con una dieta de control y dos dietas experimentales (38,5 % PC). El experimento tuvo como objetivo evaluar la utilización de hornwort, Ceratophyllum demersum, crudo (HR) y fermentado (HF) agregando un 20 % de cada uno de los ingredientes alternativos por separado a la dieta de control (C) para compensar completamente la cebada, una porción de salvado de trigo y 20 % de harina de pescado. Los resultados indicaron que los parámetros de crecimiento y eficiencia alimenticia entre los grupos no presentaron diferencias significativas (P>0,05) en la tasa de crecimiento específica (SGR), la tasa de conversión de alimento (FCR), la tasa de eficiencia de proteína (PER) y el valor productivo de proteína (PPV) de los peces alimentados con HR y HF con la dieta control. No hubo efecto (P>0,05) en la estimulación de la digestibilidad (ADCtotal) cuando se agregaron HR y HF a la dieta. Tanto HR como HF produjeron significativamente (P<0,05) el nivel más alto de saciedad asociado con la energía digerible más baja. La tasa de evacuación no se vio afectada significativamente (P>0,05) por la inclusión de hornwort crudo o fermentado. En cambio, los niveles de humedad, proteína y lípidos en la canal fueron similares (P<0.05) en todos los grupos, excepto en la dieta control (C), que registró el mayor nivel de cenizas (P<0,05). En conclusión, se encontró que la incorporación de hornwort crudo o fermentado hasta un nivel del 20% no era adecuada y hubo efectos adversos en el crecimiento y la eficiencia alimenticia de los peces experimentales.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

Abdel-Tawwab M. The preference of the omnivorous–macrophagous, Tilapia zillii (Gervais), to consume a natural free-floating Fern, Azolla pinnata. J World Aquac Soc. 2008;39(1):104-12. DOI: https://doi.org/10.1111/j.1749-7345.2007.00131.x

Abimorad EG, Carneiro DJ. Digestibility and performance of Pacu (Piaractus mesopotamicus) juveniles fed diets containing different protein, lipid and carbohydrate levels. Aquac Nutr. 2007;13:1-9. DOI: https://doi.org/10.1111/j.1365-2095.2007.00438.x

Adewumi AA. Moringa oleifera (Lam) as a protein supplement in Clarias gariepinus diet. Adv Res. 2014;2(11):580-9. DOI: https://doi.org/10.9734/IJPSS/2014/10399

Ali M, Iqbal F, Salam A, Iram S, Athar M. Comparative study of body composition of different fish species from brackish water pond. Int J Environ Sci Tech. 2005;2(3):229-32. DOI: https://doi.org/10.1007/BF03325880

Al-Kanaani SMN. Utilization of fish silage fermented with date fruit residues for feeding of the common carp Cyprinus carpio L. and its physiological and histological effects [doctoral’s thesis]. Basra (IQ): University of Basrah, College of Agriculture; 2014. 246p.

Al-Mayah AA, Al-Hamim FI. Aquatic plant, and the Algae. Basrah: University of Basrah puplisher; 1991. 701p.

Al-Sayyab AA. Evaluation of the efficiency of the grass carp Ctenopharyngodon idella Val.184 in controlling aquatic plants in drainage systems [doctoral’s thesis]. Basra (IQ): University of Basrah, College of Agriculture; 1996. 89p.

Al-Tamimi RA. The relationship between alpha-amylase activity and diet quality in fingerlings of Cyprinus carpio L. under laboratory conditions [doctoral’s thesis]. Basra (IQ): University of Basrah, College of Agriculture; 2008. 166p.

Bairagi AS, Ghosh K, Sen SK, Ray AK. Duckweed (Lemna polyrhiza) leaf meal as a source of feedstuff in formulated diets for rohu (Labeo rohita Ham.) fingerlings after fermentation with a fish intestinal bacterium. Bioresour Technol. 2002;85:17-24. DOI: https://doi.org/10.1016/S0960-8524(02)00067-6

Chanda S, Badhuri SK, Sardar D. Chemical characterization of pressed fibrous residues of four aquatic weeds. Aquat Bot. 1991;42(1):81-5. DOI: https://doi.org/10.1016/0304-3770(91)90108-H

Chilton EW, Muoneke MI. Biology and management of grass carp (Ctenopharyngodon idella, Cyprinidae) for vegetation control: a North American perspective. Rev Fish Biol Fish. 1992;2(4):283-320. DOI: https://doi.org/10.1007/BF00043520

Cruz Y, Kijora C, Vianys A, Schulz C. Inclusion of fermented aquatic plants as feed resource for cachama blanca, Piaractus brachypomus, fed low-fish meal diets. Orinoquia. 2014;18(2):233-40.

Cruz Y, Kijora C, Wedler E, Danier J, Schulz C. Fermentation properties and nutritional quality of selected aquatic macrophytes as alternative fish feed in rural areas of the Neotropics. Livest Res. 2011;23(11):73-86.

Cruz Y, Kijora C, Wuertz S, Schulz C. Effect of fermented aquatic macrophytes supplementation on growth performance, feed efficiency and digestibility of Nile tilapia (Oreochromis niloticus) juveniles fed low fishmeal diets. Livest Res Rural Dev [Internet]. 2015 [cited 2024 Feb 19]. Available from: http://www.lrrd.org/lrrd27/9/cruz27177.html

El-Sayed AFM. Effects of fermentation methods on the nutritive value of water hyacinth for Nile tilapia Oreochromis niloticus (L.) fingerlings. Aquaculture, 2003;218:471-8. DOI: https://doi.org/10.1016/S0044-8486(02)00252-1

Eyo AA. Fundamentals of fish nutrition and diet development an overview. In: Eyo AA, editor. National workshop on fish feed development and feeding practices in aquaculture. New Bussa: FAO; 2003. p. 1-33.

Fagbenro OA. Apparent digestibility of crude protein and gross energy in some plant and animal-based feedstuffs by Clarias isheriensis (Siluriformes: Clariidae) (Sydenham 1980). J Appl Ichthyol. 1996;12(1):67-8. DOI: https://doi.org/10.1111/j.1439-0426.1996.tb00063.x

Felix N, Brindo RA. Substituting fish meal with fermented seaweed, Kappaphycus alvarezii in diets of juvenile freshwater prawn Macrobrachium rosenbergii. Int J Fish Aquat Stud. 2014;1(5):261-5.

Flores-Miranda MC, Luna-González A, Cortés-Espinosa DV, Cortés-Jacinto E, Fierro-Coronado JA, Alvarez-Ruiz P, González-Ocampo HA, Escamilla-Montes R. Bacterial fermentation of Lemna sp. as a potential substitute of fishmeal in shrimp diets. Afr J Microbiol Res. 2014;8(14):1516-26. DOI: https://doi.org/10.5897/AJMR2014.6654

Francis G, Makkar HPS, Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture. 2001;199:197-227. DOI: https://doi.org/10.1016/S0044-8486(01)00526-9

Franklin P, Dunbar M, Whitehead P. Flow controls on lowland river macrophytes: a review. Sci Total Environ. 2008;400(1-3):369-78.‏ DOI: https://doi.org/10.1016/j.scitotenv.2008.06.018

Gao W, Liu YJ, Tian LX, Mai KS, Liang GY. Effect of dietary carbohydrates to lipid ratios on growth performance, body composition, nutrient utilization and hepatic enzymes activities of herbivorous grass carp (Ctenopharyngodon idella). Aquac Nutr. 2009;16:327-33. DOI: https://doi.org/10.1111/j.1365-2095.2009.00668.x

Gholami A. An investigation of factors that affect the efficiency of limiting amino acid utilization by rainbow trout (Oncorhynchus mykiss) [doctoral’s thesis]. Guelph (CA): University of Guelph; 2015. 163p.

Hasanuddin M, Putra BS, Nur A, Rimmer MA. Aquatic weed Ceratophyllum sp. as a low-cost feed for brackish water pond culture of tilapia Oreochromis niloticus. AACL Bioflux. 2016;9(2):408-13.

Hepher B. Nutrition of pond fishes. Cambridge: Cambridge University Press; 1988. 338p. DOI: https://doi.org/10.1017/CBO9780511735455

Hiscock P. Encyclopedia of Aquarium Plants. Hauppauge: Barron’s; 2003. 205p.

Ilias NN, Jamal P, Jaswir I, Sulaiman S, Zainuddin Z, Azmi AS. Potentiality of selected seaweed for the production of nutritious feed fish using solid-state fermentation. J Eng Sci Technol. 2015;3(1):30-40.

Kapuscinski KL, Farrell JM, Stehman SV, Boyer GL, Fernando DD, Teece MA, Tschaplinski TJ. Selective herbivory by an invasive cyprinid, the rudd Scardinius erythrophthalmus. Freshw Biol. 2014;59:2315-27. DOI: https://doi.org/10.1111/fwb.12433

King K. Growth, survival, and body composition of juvenile Atlantic sturgeon fed five commercial diets under hatchery conditions. N Am J Aquac. 2004;66:53-60. DOI: https://doi.org/10.1577/A03-009

Laining A, Kristanto AH. Aquafeed development and utilization of alternative dietary ingredients in aquaculture feed formulations in Indonesia. In: Catacutan MR, Coloso RM, Acosta BO, editors. Development and use of alternative dietary ingredients or fish meal substitutes in aquaculture feed formulation. Tigbauan: Aquaculture Department, Southeast Asian Fisheries Development Center; 2015. p. 3-13.

Laining A, Usman U, Syah R. Aquatic weed Ceratophyllum sp. as a dietary protein source: its effects on growth and fillet amino acid profile of rabbitfish, Siganus guttatus. AACL Bioflux. 2016;9(2):352-95.

Lall SP. Concepts in the formulation and preparation of a complete fish diet. In: De Silva SS, editor. Fish nutrition research in Asia. Proceedings of the Fourth Asian Fish Nutrition Workshop. Manila: Asian fisheries society; 1991. p. 1-12.

Lovell RT. Nutrition and feeding of fish. New York: Van Nostrand Reinhold; 1989. 260p. DOI: https://doi.org/10.1007/978-1-4757-1174-5

National Research Council. Nutrient requirement of fish. Washington: National Academy Press; 1993. 114p.

Perleberg D. Aquatic vegetation of Long Lake (DOW 11-0142-00). Cass County: Department of Natural Resources, Ecological Resources Division, 2008, 24p.

Porto HLR, De Castro ACL, Filho VEM, Rádis-Baptista G. Evaluation of the chemical composition of fish species captured in the lower stretch of Itapecuru River, Maranhão, Brazil. Int J Adv Agric Environ Eng. 2016;3(1):1-7. DOI: https://doi.org/10.15242/IJAAEE.U0416214

Velasquez YC, Kijora C, Schulz C. Fermentation properties and nutritional quality of selected aquatic macrophytes as alternative fish feed in rural areas of the Zoological and Entomological Letters Neotropics. Livest Res Rural Dev. 2011;9(3)89-94.

Watanabe T, Tanemura N, Sugiura S. Effects of in vitro enzymatic digestion of rapeseed meal, soybean meal, macrophyte meal, and Algal meal on in vivo digestibilities of protein and minerals evaluated using common carp Cyprinus carpio. Aquacult Sci. 2016;64(2):215-22.

Webster CD, Lim C. Nutrient Requirements and Feeding of Finfish for Aquaculture. New York: The Haworth Press; 2002. 364p. DOI: https://doi.org/10.1079/9780851995199.0000

Wee KL. Use of nonconventional feedstuffs of plant origin as fish feeds-is it practical and economically feasible? In: De Silva SS, editor. Fish Nutrition Research in Asia. Proc. 4th Asian Fish Nutrition Workshop. Manila: Asian Fisheries Society; 1991. p. 13-32.

Descargas

Publicado

2024-03-01

Cómo citar

1.
Sayed-Lafi RM, Al-Tameemi RA, Gowdet AI. Efecto de la inclusión en dieta de Ceratophyllum demersum crudo y fermentado sobre el desempeño del crecimiento y la digestibilidad en juveniles de carpa herbívora, Ctenopharyngodon Idella Val. Agrocienc Urug [Internet]. 1 de marzo de 2024 [citado 4 de julio de 2024];28:e1201. Disponible en: http://mail.revista.asocolderma.org.co/index.php/agrociencia/article/view/1201

Número

Sección

Producción animal y pasturas
QR Code

Métricas

Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas