Mejoras al manejo de plagas en frutales de carozo dentro de una estrategia regional

Autores/as

  • Valentina Mujica Instituto Nacional de Investigaciones Agropecuarias (INIA), Programa Nacional de Investigación en Producción Frutícola, Canelones, Uruguay. https://orcid.org/0000-0002-9820-2879
  • Roberto Zoppolo Instituto Nacional de Investigaciones Agropecuarias (INIA), Programa Nacional de Investigación en Producción Frutícola, Canelones, Uruguay. https://orcid.org/0000-0003-3063-0196

DOI:

https://doi.org/10.31285/AGRO.25.405

Palabras clave:

Grapholita molesta, feromonas sexuales, kairomonas, manejo integrado

Resumen

Los frutales de carozo son afectados por diferentes plagas que pertenecen a diversos órdenes, siendo Grapholita molesta hacia la cual van dirigidas la mayoría de las intervenciones de control en estos cultivos. El manejo basado íntegramente en insecticidas ha demostrado que no siempre es efectivo. La necesidad de usar principios activos más específicos y de menor toxicidad para especies no blanco y benéficas plantea ser más conscientes de la biología de las plagas que queremos controlar, dado que tienen ventanas de aplicación muy estrechas para que estos sean efectivos. La posibilidad de controlar insectos utilizando su propia biología mediante el uso de feromonas abre las puertas a un nuevo tipo de control altamente específico a través de feromonas sexuales y de mínimo impacto ambiental. Estos compuestos pueden usarse bajo diferentes modalidades: monitoreo, confusión sexual, trampeo masivo o attract-and-kill. Cuando el manejo de poblaciones con feromonas se realiza en grandes extensiones la técnica expresa todo su potencial y sus beneficios son más estables y duraderos en el tiempo. En Uruguay este tipo de manejo se ha implementado formalmente desde el año 2012, con resultados por demás exitosos. El paso siguiente para una mejora en el monitoreo y el control sería la incorporación de kairomonas a esta ecuación, lo que aumentaría sustancialmente su eficiencia.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

Allison JD, Cardé RT. Pheromones: reproductive isolation and evolution in moths. In: Allison JD, Cardé RT, editors. Pheromone communication in moths: evolution, behavior and application. Oakland: University of California Press; 2016. p. 11-24.

Atanasov A, Shearer PW, Hamilton G, Polk D. Development and implementation of a reduced risk peach arthropod management program in New Jersey. J Econ Entomol. 2002;95:803-12.

Bakthavatsalam N. Semiochemicals. In: Omkar, editor. Ecofriendly Pest Management for Food Security. Amsterdam: Elsevier; 2016. p. 563-611.

Barros-Parada W, Ammagarahalli B, Basoalto E, Fuentes-Contreras E, Gemeno C. Captures of oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae), in traps baited with host-plant volatiles in Chile. Appl Entomol Zool. 2018;53:193-204.

Batista Neto O, Botton M, Bernardi D, Arioli C, Omoto C. Susceptibility of Grapholita molesta to insecticides in Brazil. Cienc Rural. 2018;48(1):1-7.

Cai DW. Understand the role of chemical pesticides and prevent misuses of pesticides. Bulletin of Agricultural Science and Technology. 2008;1:36-8.

Campion DG, Hunter-Jones P, McVeigh LJ, Hall DR, Lester R, Nesbitt BF. Modifications of the attrac tiveness of the primary pheromone component of the Egyptian cotton leafworm. Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae), by secondary pheromone components and related chemicals. Bull Entomol Res. 1980;70:417-34.

Charmillot PJ, Hofer D. Control of codling moth, Cydia pomonella L., by an attract and kill formulation. IOBC WPRS Bull. 1997;20:139-40.

El Sayed AM, Suckling DM, Wearing CH, Byers JA. Potential of mass trapping for long-term pest man agement and eradication of invasive species. J Econ Entomol. 2006;99(5):1550-64.

Guarino S, Peri E, Lo Bue P, Germana MP, Colazza S, Anshelevich L, Ravid U, Soroker V. Assessment of synthetic chemicals for disruption of Rhynchophorus ferrugineus response to attractant-baited traps in an urban environment. Phytoparasitica. 2013;41(1):79-88.

Gut LJ, Stelinski LL, Thomson DR, Miller JR. Behaviour-modifying chemicals: prospects and constraints in IPM. In: Koul O, Dhaliwal GS, Cuperus GW, editors. Integrated Pest Management: Potential Constraints and Challenges. New York: CABI; 2004. p. 73-121.

Howse P, Stevens I, Jones O. Insect Pheromones and their use in Pest Management. London (UK): Chapman & Hill; 1998. 639p.

Il’ichev A. Area-wide application of pheromone mediated mating disruption in sustainable IPM. IOBC WPRS Bull. 2006;29:95-104.

Il’ichev A, Williams D, Milner A. Mating disruption barriers in pome fruit for improved control of oriental fruit moth Grapholita molesta Busck (Lep., Tortricidae) in stone fruit under mating disruption. J Appl Entomol. 2004;128:126-32.

Jones VP, Sasaki AM. Demographic analysis of delayed mating in mating disruption: a case study with Cryptophelbia illepida (Lepidoptera: Tortricidae). J Econ Entomol. 2001;94(4):785-92.

Khan MA, Ahmad W. Synthetic Chemical Insecticides: Environmental and Agro Contaminants. In: Khan M, Ahmad W, editors. Microbes for Sustainable Insect Pest Management. Sustainability in Plant and Crop Protection. Cham (CH): Springer; 2019. p. 1-22.

Kirk H, Dorn S, Mazzi D. Worldwide population genetic structure of the oriental fruit moth (Grapholita molesta), a globally invasive pest. BMC Ecol. 2013;13:1-11.

Knight AL, Cichón L, Lago J, Fuentes-Contreras E, Barros-Parada W, Hull L, Krawczyk G, Zoller B, Hansen R, Hilton R, Basoalto E. Monitoring oriental fruit moth and codling moth (Lepidoptera: Tortricidae) with combinations of pheromones and kairomones. J Appl Entomol. 2014;138:783-94.

Knight AL, Light DM. Combined approaches using sex pheromone and pear ester for behavioural disruption of codling moth (Lepidoptera: Tortricidae). J Appl Entomol. 2014;138:96-108.

Knipling EF. Entomology and the management of man’s environment. J Aust Entomol Soc. 1972;11(3):153-67.

Knipling EF. The Basic Principles of Insect Suppression and Management. Washington (DC): USDA; 1979. 659p. (Agricultural Handbook; 512).

Kong W, Li J, Fan R, Li S, Ma R. Sex-Pheromone-Mediated Mating Disruption Technology for the Oriental Fruit Moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae): Overview and Prospects. Psyche [Internet]. 2014 [cited 2021 Jan 05];2014:253924. Available from: Available from: http://bit.ly/3otdX9y .

Koul O, Cuperus GW, Elliott N. Areawide Pest Management-Theory and Implementation. Wallingford (UK): CABI; 2008. 608p.

Law JH, Regnier FE. Pheromones. Annu Rev Biochem. 1971;40:533-48.

Light DM, Grant JA, Haff RP, Knight AL. Addition of pear ester with sex pheromone enhances disruption of mating by female codling moth (Lepidoptera: Tortricidae) in walnut orchards treated with meso dispensers. Environ Entomol. 2017;46:319-27.

Lu PF, Qiao HL, Xu ZC, Cheng J, Zong SX, Luo YQ. Comparative analysis of peach and pear fruit volatiles attractive to the oriental fruit moth, Cydia molesta. J Plant Interact. 2013;9(1):388-95.

Miller J, Gut L. Mating disruption for the 21st century: matching technology with mechanism. Environ Entomol. 2015;44:427-53.

Mohammadpur K, Faghih A. Investigation on the possibility of co mass trapping of the populations of red palm weevil, Rhynchophorus ferrugineus and date palm fruit stalk borer, Oryctes elegans using pheromone traps. Appl Entomol Phytopathol. 2008;75(2):39-55.

Molinari F, Anfora G, Schmidt S, Villa M, Ioriatti C, Pasqualini E, De Cristofaro A. Olfactory activity of ethyl (E, Z)-2,4-Decadienoate on adult oriental fruit moths. Can Entomol. 2010;142:481-8.

Mujica V, Preti M, Basoalto E, Cichón L, Fuentes-Contreras E, Barros-Parada W, Krawcyk G, Nunes M, Walgenbach J, Hansen R, Knight A. Improved monitoring of oriental fruit moth (Lepidoptera: Tortricidae) with terpinyl acetate plus acetic acid membrane lures. J Appl Entomol. 2018;142:731-44.

Najar-Rodriguez A, Orschel B, Dorn S. Season-long Volatile emissions from peach and pear trees in situ, overlapping profiles, and olfactory attraction of an oligophagous fruit moth in the laboratory. J Chem Ecol. 2013;39:418-29.

Natale D, Mattiacci L, Hern A, Pasqualini E, Dorn S. Bioassay approaches to observing behavioural responses of adult female Cydia molesta to host plant odour. J Appl Entomol. 2004;128:182-7.

Natale D, Mattiacci L, Hern A, Pasqualini E, Dorn S. Response of female Cydia molesta (Lepidoptera: Tortricidae) to plant derived volatiles. Bull Entomol Res. 2003;93:335-42.

Núñez S, Scatoni I. Tecnologı́a disponible para el manejo de plagas en frutales de hoja caduca. Montevideo: INIA; 2013. 150p. (Serie Técnica; 210).

Piñero JC, Dorn S. Synergism between aromatic compounds and green leaf volatiles derived from the host plant underlies female attraction in the oriental fruit moth. Entomol Exp Appl. 2007;125:185-94.

Reddy G, Guerrero A. Interactions of insect pheromones andplant semiochemicals. Trends Plant Sci. 2004;9(5):253-61.

Reddy G, Guerrero A. New Pheromones and Insect Control Strategies. In: Litwack G, editors. Pheromones. London: Academic Press; 2010. p. 493-519. (Vitamins and Hormones; 83).

Rhino B, Dorel M, Tixier P, Risede JM. Effect of fallows on population dynamics of Cosmopolites sordidus: toward integrated management of banana fields with pheromone mass trapping. Agric For Ento mol. 2010;12(2):195-202.

Riga E, Lacey LA, Guerra N, Headrick HL. Control of the oriental fruit moth, Grapholita molesta, using entomopathogenic nematodes in laboratory and fruit bin assays. J Nematol. 2006;38(1):168-71.

Saha T, Chandran N. Chemical ecology and pest managemet: a review. Int J Chem Stud. 2017;5(6):618-21.

Sheng CF, Yangf FA, Wei YB, Zhu CQ, Xiong YW. Field trials for mass trapping of rice stem borer Chilo suppressalis by sex pheromone. Plant Prot. 2000;26(5):4-5.

Su JW, Xuan WJ, Sheng CF, Ge F. The sex pheromone of rice stem borer, Chilo suppressalis in paddy fields: suppressing effect of mass trapping with synthetic sex pheromone. Zhongguo Shuidao Kexue. 2003;17(2):171-4.

Suckling DM, Charles JG, Allen D, Stevens PS. Possibility of control of painted apple moth (Teia anartoi des) using single component mating disruption. N Z Plant Prot. 2002;55:1-6.

Suckling DM, Karg G. Pheromones and other semiochemicals. In: Rechcigl JE, Rechcigl AA, editors. Biological and biotechnological control of insect pests. Boca Raton (FL): CRC Press; 1998. p. 63-99.

Suckling DM, Khoo JGL. Cline in frequency of azinphos-methyl resistance in lightbrown apple moth (Lepidoptera: Tortricidae). J Econ Entomol. 1993;86:1308-16.

Szendrei Z, Rodriguez-Saona C. A meta-analysis of insect pest behavioral manipulation with plant volatiles. Entomol Exp Appl. 2010;134:201-10.

Tabrizian M, Mohammadpoor K, Tabak SN. Synthesis and field evaluation of aggregation pheromone of date palm fruit stalk borer, Oryctes elegans. Appl Entomol Phytopathol. 2009;87:51-60.

Trematerra P. Pheromones and integrated pest management in stored products. IOBC WPRS Bull. 2002;25:9-14.

Trematerra P, Gentile P. Five years of mass trapping of Ephestia kuehniella Zeller: a component of IPM in a flour mill. J Appl Entomol. 2010;134(2):149-56.

Varela N, Avilla J, Anton S, Gemeno C. Synergism of pheromone and host-plant volatile blends in the attraction of Grapholita molesta males. Entomol Exp Appl. 2011;141:114-22.

Varma NRG, Krishnaiah K, Pasalu IC, Rao PRM. Influence of field size in management of yellow stem borer (YSB), Scirpophaga incertulas Walker through pheromone mediated mass trapping in rice. Indian Journal of Plant Protection. 2004;32(1):39-41.

Vreysen M, Klassen W, Carpenter J. Overview of Technological Advances Toward Greater Efficiency and Efficacy in Sterile Insect-Inherited Sterility Programs Against Moth Pests. Fla Entomol. 2016;99(sp1):1-12.

Vreysen MJB, Robinson AS, Hendrichs J. Area-wide Control of Insect Pests: From Research to Field Implementation. Dordrecht: Springer; 2007. 789p.

Wang XP, Le VT, Fang YL, Zhang ZN. Trap effect on the capture of Plutella xylostella (Lepidoptera: Plutel lidae) with sex pheromone lures in cabbage fields in Vietnam. Appl Entomol Zool. 2004;39(2):303-9.

Weber DC, Robbins PS, Averill AL. Hoplia equina (Coleoptera: Scarabaeidae) and nontarget capture using 2 tetra decanone baited traps. Environ Entomol. 2005;34(1):158-63.

Whitaker RH. The biochemical ecology of higher plants. In: Sondheimer E, Simeone JB, editors. Chemical Ecology. New York: Academic Press; 1970. p. 43-70.

Witzgall P, Kirsch P, Cork A. Sex pheromones and their impact on pest management. J Chem Ecol. 2010;36:80-100.

Zhang WJ, Jiang FB, Ou JF. Global pesticide consumption and pollution: With China as a focus. Proc Int Acad Ecol Environ Sci. 2011;1(2):125-44.

Zhang YB. Analyze the importance of pesticides based on world’s needs on grain and agricultural development. World Pesticides. 2009;31:1-3.

Zoppolo R, Scatoni I, Duarte F, Mujica V, Gabard Z. Area-wide pest management in deciduous fruits of southern Uruguay. Acta Hort. 2016;(1137):153-60.

Žunić A, Vuković S, Lazić S, Šunjka D, Bošković D. The efficacy of novel diamide insecticides in Grapholita molesta suppression and their residues in peach fruits. Plant Prot Sci. 2020;56(1):46-51.

Publicado

2021-04-06

Cómo citar

1.
Mujica V, Zoppolo R. Mejoras al manejo de plagas en frutales de carozo dentro de una estrategia regional. Agrocienc Urug [Internet]. 6 de abril de 2021 [citado 6 de julio de 2024];25(NE1):e405. Disponible en: http://mail.revista.asocolderma.org.co/index.php/agrociencia/article/view/405

Número

Sección

Protección vegetal
QR Code

Métricas

Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas