Danos causados pelo sol e potencial hídrico em tecidos de caule e frutos de maçãs (Malus domestica) 'Brasil Gala', 'Cripps Pink' e 'Granny Smith'

Autores

DOI:

https://doi.org/10.31285/AGRO.27.1213

Palavras-chave:

danos causados pelo sol, escaldadura solar, qualidade da fruta, dano abiótico, proteção de cultivos

Resumo

Os descartes devido a distúrbios fisiológicos e danos mecânicos atingem mais de 50% da produção de maçãs em áreas de clima neotropical, como o Uruguai. Os danos são geralmente visíveis durante a maturação e armazenamento, mas dependem de factores que ocorrem no campo. As queimaduras solares ocorren em algumas épocas como um dos principais defeitos de qualidade e tem sido historicamente relacionada a altos valores de radiação e temperatura e, mais recentemente, ao estado hídrico dos frutos e tecidos das árvores. O presente estudo avaliou a relação dos danos solares com o estado hídrico dos tecidos dos frutos em ‘Brasil Gala’, ‘Cripps Pink’ e ‘Granny Smith’, bem como o efeito dos tratamentos para prevenir danos solares (50% malha preta, 20 % malha branca translúcida e aplicação de caulinita) no potencial hídrico em tecidos de caule em ‘Granny Smith’. O potencial hídrico dos frutos diminuiu ao longo do ciclo de crescimento. Nos frutos localizados na parte externa da árvore, as faces expostas apresentaram menores valores de poten-cial hídrico dos frutos do que as faces não expostas. O efeito dos tratamentos para evitar as queimaduras solares no potencial hídrico só pôde ser observado no caso da rede preta de 50 %.

Downloads

Não há dados estatísticos.

Referências

Alonso-Suárez R, Abal G, Siri R, Muse P. Satellite-derived solar irradiation map for Uruguay. Energy Procedia. 2014;57:1237-46. Doi: 10.1016/j.egypro.2014.10.072.

Bernardi RE, Holmgren M, Arim M, Scheffer M. Why are forests so scarce in subtropical South America? The shaping roles of climate, fire and livestock. For Ecol Manag. 2016;363:212-7. Doi: 10.1016/j.foreco.2015.12.032.

Boini A, Manfrini L, Morandi B, Corelli Grappadelli L, Predieri S, Daniele GM, López G. High levels of shading as a sustainable application for mitigating drought, in modern apple production. Agronomy. 2021;11:422. Doi: 10.3390/agronomy11030422.

Crosa M, Burzaco P. Análisis de las perdidas y sus causas en cadenas de suministro de manzanas. In. Anuario OPYPA 2021. Montevideo: MGAP; 2021. p. 319-29.

D’Abrosca B, Pacifico S, Cefarelli G, Mastellone C, Fiorentino A. ‘Limoncella’ Apple, an Italian Apple Cultivar: phenolic and flavonoid contents and antioxidant activity. Food Chem. 2007;104:1333-7. Doi: 10.1016/j.foodchem.2007.01.073.

Espinoza-Meza S, Ortega-Farias S, López-Olivari R, Araya-Alman M, Carrasco-Benavides M. Response of fruit yield, fruit quality, and water productivity to different irrigation levels for a microsprinkler-irrigated apple orchard (cv. Fuji) growing under Mediterranean conditions. Eur J Agron. 2023;145:126786. Doi: 10.1016/j.eja.2023.126786.

Ferguson I, Volz R, Woolf A. Preharvest factors affecting physiological disorders of fruit. Postharvest Biol Technol. 1999;15:255-62. Doi: 10.1016/S0925-5214(98)00089-1.

Gindaba J, Wand SJE. Do fruit sunburn control measures affect leaf photosynthetic rate and stomatal conductance in ‘Royal Gala’ apple? Environ Exp Bot. 2007;59:160-5. Doi: 10.1016/j.envexpbot.2005.11.001.

Hunsche M, Blanke MM, Noga G. Does the microclimate under hail nets influence micromorphological characteristics of apple leaves and cuticles? J Plant Physiol. 2010;167(12):974-80. Doi: 10.1016/j.jplph.2010.02.007.

INIA. GRAS [Internet]. Montevideo: INIA; [cited 2023 Dec 6]. Available from: http://www.inia.uy/GRAS/

Kanayama Y, Kochetov A. Abiotic stress biology in horticultural plants. Tokyo: Springer; 2015. 220p. Doi: 10.1007/978-4-431-55251-2.

Lobos GA, Retamales JB, Hancock JF, Flore JA, Cobo N, del Pozo A. Spectral irradiance, gas exchange characteristics and leaf traits of Vaccinium corymbosum L. ‘Elliott’ grown under photo-selective nets. Environ Exp Bot. 2012;75:142-9. Doi: 10.1016/j.envexpbot.2011.09.006.

López G, Boini A, Manfrini L, Torres-Ruiz JM, Pierpaoli E, Zibordi M, Losciale P, Morandi B, Corelli-Grappadelli L. Effect of shading and water stress on light interception, physiology and yield of apple trees. Agric Water Manag. 2018;210:140-8. Doi: 10.1016/j.agwat.2018.08.015.

Makeredza B, Schmeisser M, Lötze E, Steyn WJ. Water stress increases sunburn in “Cripps” Pink’ apple. Hortic Sci. 2013;48(4):444-7.

Manja K, Aoun M. The use of nets for tree fruit crops and their impact on the production: a review. Sci Hortic. 2019;246:110-22. Doi: 10.1016/j.scienta.2018.10.050.

McCaskill MR, McClymont L, Goodwin I, Green S, Partington DL. How hail netting reduces apple fruit surface temperature: a microclimate and modelling study. Agric For Meteorol. 2016;226­227:148-60. Doi: 10.1016/j.agrformet.2016.05.017.

Mupambi G, Anthony BM, Layne DR, Musacchi S, Serra S, Schmidt T, Kalcsits LA. The influence of protective netting on tree physiology and fruit quality of apple: a review. Sci Hortic. 2018;236:60-72. Doi: 10.1016/j.scienta.2018.03.014.

Mupambi G, Musacchi S, Serra S, Kalcsits LA, Layne DR, Schmidt T. Protective netting improves leaf-level photosynthetic light use efficiency in ‘honeycrisp’ apple under heat stress. HortScience. 2018;53:1416-22. Doi: 10.21273/HORTSCI13096-18.

Mupambi G, Valverdi NA, Camargo-Alvarez H, Reid M, Kalcsits L, Schmidt T, Castillo F, Toye J. Reflective groundcover improves fruit skin color in ‘Honeycrisp’ apples grown under protective netting. HortTechnology. 2021;31(5):607-14. Doi: 10.21273/HORTTECH04776-20.

Naor A. Irrigation Scheduling and evaluation of tree water status in deciduous orchards. Hortic Rev. 2006;32:111-65. Doi: 10.1002/9780470767986.ch3.

Naor A. Midday stem water potential as a plant water stress indicator for irrigation scheduling in fruit trees. Acta Hortic. 2000;(537):447-54. Doi: 10.17660/ActaHortic.2000.537.52.

Pitchers B, Do FC, Pradal C, Dufour L, Lauri PÉ. Apple tree adaptation to shade in agroforestry: an architectural approach. Am J Bot. 2021;108:732-43. Doi: 10.1002/ajb2.1652.

Racsko J, Schrader LE. Sunburn of apple fruit: historical background, recent advances and future perspectives. CRC Crit Rev Plant Sci. 2012;31:455-504. Doi: 10.1080/07352689.2012.696453.

Reig G, Donahue DJ, Jentsch P. The efficacy of four sunburn mitigation strategies and their effects on yield, fruit quality, and economic performance of Honeycrisp Cv. Apples under Eastern New York (USA) climatic conditions. Int J Fruit Sci. 2020;20:541-61. Doi: 10.1080/15538362.2019.1605558.

Severino V, Arias-Sibillotte M, Dogliotti S, Frins E, Yuri JA, González-Talice J. Climatic and physiological parameters related to the progress and prediction of apple sunburn damage in a neotropical climate. Adv Hortic Sci. 2020;34:431-40. Doi: 10.13128/ahsc-9764.

Severino V, Arias-Sibillotte M, Dogliotti S, Frins E, Yuri JA, González-Talice J. Pre- and postharvest management of sunburn in ‘Granny Smith’ Apples (Malus × domestica Borkh) under neotropical climate conditions. Agronomy. 2021;11(8):1618. Doi: 10.3390/agronomy11081618.

Shivashankara KS, Rao NKS, Geetha GA. Impact of climate change on fruit and vegetable quality. In: Singh H, Rao N, Shivashankar K, editors. Climate-resilient horticulture: adaptation and mitigation strategies. New Delhi: Springer; 2013. pp. 237-44. Doi: 10.1007/978-81-322-0974-4_21.

Szabó A, Tamás J, Nagy A. The influence of hail net on the water balance and leaf pigment content of apple orchards. Sci Hortic. 2021;283:110112. Doi: 10.1016/j.scienta.2021.110112.

Tanny J, Cohen S, Grava A, Naor A, Lukyanov V. The effect of shading screens on microclimate of apple orchards. Acta Hortic. 2009;(807):103-8. Doi: 10.17660/ActaHortic.2009.807.11.

Tiscornia G, Cal A, Giménez A. Análisis y caracterización de la variabilidad climática en algunas regiones de Uruguay. RIA Rev investig agropecu. 2016;42(1):66-71.

Torres CA, Sepúlveda A, González-Talice J, Yuri JA, Razmilic I. Fruit water relations and osmoregulation on apples (Malus domestica Borkh.) with different sun exposures and sun-injury levels on the tree. Sci Hortic. 2013;161:143-52. Doi: 10.1016/j.scienta.2013.06.035.

Torres CA, Sepúlveda A, Leon L, Yuri JA. Early detection of sun injury on apples (Malus domestica Borkh.) through the use of crop water stress index and chlorophyll fluorescence. Sci Hortic. 2016;211:336-42. Doi: 10.1016/j.scienta.2016.09.022.

Yuri JA. Daño por sol en manzanas. Fruticultura. 2010;8:2-9.

Downloads

Publicado

2024-02-06

Como Citar

1.
Severino V, Dogliotti S, Echeverría G, Frins E, González-Talice J, Yuri JA, et al. Danos causados pelo sol e potencial hídrico em tecidos de caule e frutos de maçãs (Malus domestica) ’Brasil Gala’, ’Cripps Pink’ e ’Granny Smith’. Agrocienc Urug [Internet]. 6º de fevereiro de 2024 [citado 6º de julho de 2024];27(NE1):e1213. Disponível em: http://mail.revista.asocolderma.org.co/index.php/agrociencia/article/view/1213

Edição

Seção

Irrigation and water management
QR Code

Métricas

Métricas do artigo
Vistas abstratas
Visualizações da cozinha
Visualizações de PDF
Visualizações em HTML
Outras visualizações

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >>