Atividade biocontroladora de Debaryomyces hansenii contra o mofo azul em maçã e pêra armazenadas em frio

Autores

DOI:

https://doi.org/10.31285/AGRO.25.839

Palavras-chave:

maçã, pera, biocontrole, doenças pós-colheita, leveduras, Penicillium expansum

Resumo

As maçãs e peras são normalmente armazenadas em câmaras frigoríficas para preservar a qualidade e assim manter um abastecimento constante ao longo do ano. No entanto, o desenvolvimento de podridões, causadas principalmente por Penicillium expansum não pode ser evitado. O controle biológico tem sido considerado como una alternativa potencial para reduzir a perda de frutas. Neste trabalho, 16 leveduras psicrotróficas antárticas pertencentes a espécie D. hansenii foram avaliadas como agentes de biocontrole contra P. expansum em macas e peras. Os isolados com diferentes graus de biocontrole foram posteriormente avaliados in vitro a fim de elucidar os mecanismos de ação que poderiam estar contribuindo ao biocontrole. Não foram encontradas correlações entre os mecanismos estudados e a capacidade de biocontrole das diferentes cepas. Uma das cepas codificadas como F9D foi selecionada devido a sua capacidade de reduzir a incidência da doença em mais de 95 % em maçãs e 85 % em peras. Esta cepa poderia ser uma boa candidata para o desenvolvimento de uma formulação que proteja os dois tipos de fruta. Um método de ISSR-PCR foi desenvolvido para tipificar a cepa selecionada. O marcador molecular pode ser uma ferramenta útil para fazer um seguimento da cepa uma vez aplicada a fruta.

Downloads

Não há dados estatísticos.

Referências

Al-Qaysi SAS, Al-Haideri H, Thabit ZA, Al-Kubaisy WHAA-R, Ibrahim JAA-R. Production, Characterization, and Antimicrobial Activity of Mycocin Produced by Debaryomyces hansenii DSMZ70238. Int J Microbiol [Internet]. 2017 [cited 2021 Nov 22];2017:2605382. Doi: 10.1155/2017/2605382.

Arrarte E, Garmendia G, Rossini C, Wisniewski M, Vero S. Volatile organic compounds produced by Antarctic strains of Candida sake play a role in the control of postharvest pathogens of apples. Biol Control [Internet]. 2017 [cited 2021 Nov 22];109:14-20. Doi: 10.1016/j.biocontrol.2017.03.002.

Banjara N, Nickerson KW, Suhr MJ, Hallen-Adams HE. Killer toxin from several food-derived Debaryomyces hansenii strains effective against pathogenic Candida yeasts. Int J Food Microbiol [Internet]. 2016 [cited 2021 Nov 22];222:23-9. Doi: 10.1016/j.ijfoodmicro.2016.01.016.

Barkai-Golan R. Postharvest Diseases of Fruits and Vegetables: Development and Control. Amasterdam: Elsevier Sciences; 2001. 417p.

Breuer U, Harms H. Debaryomyces hansenii: an extremophilic yeast with biotechnological potential. Yeast [Internet]. 2006;23(6):415-37. Doi: 10.1002/yea.1374.

Cabrera M, Garmendia G, Rufo C, Pereyra S, Vero S. Trichoderma atroviride como controlador biológico de fusariosis de espiga de trigo mediante la reducción del inóculo primario en rastrojo. Terra Latinoamericana [Internet]. 2020 [cited 2021 Nov 22];38(3):629-51. Doi: 10.28940/terra.v38i3.664.

Chalutz E, Wilson C. Postharvest biocontrol of green and blue mold and sour rot of citrus fruit by Debaryomyces hansenii. Plant Dis. 1990;74:134-7.

Çorbacı C, Uçar FB. Purification, characterization and in vivo biocontrol efficiency of killer toxins from Debaryomyces hansenii strains. Int J Biol Macromol [Internet]. 2018 [cited 2021 Nov 22];119:1077-82. Doi: 10.1016/j.ijbiomac.2018.07.121.

Czarnecka M, Żarowska B, Połomska X, Restuccia C, Cirvilleri G. Role of biocontrol yeasts Debaryomyces hansenii and Wickerhamomyces anomalus in plants’ defence mechanisms against Monilinia fructicola in apple fruits. Food Microbiol [Internet]. 2019 [cited 2021 Nov 22];83:1-8. Doi: 10.1016/j.fm.2019.04.004.

Di Francesco A, Martini C, Mari M. Biological control of postharvest diseases by microbial antagonists: how many mechanisms of action? Eur J Plant Pathol [Internet]. 2016 [cited 2021 Nov 22];145(4):711-7. Doi: 10.1007/s10658-016-0867-0.

Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW. InfoStat [Internet]. Version 2015. Córdoba: Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias; 2015 [cited 2021 Nov 22]. Available from: https://bit.ly/3dDvIyu.

Di Rienzo JA, Guzmán AW, Casanoves F. A multiple-comparisons method based on the distribution of the root node distance of a binary tree. J Agric Biol Environ Stat. 2002;7(2):129-42.

Droby S, Chalutz E, Wilson CL, Wisniewski ME. Characterization of the biocontrol activity of Debaryomyces hansenii in the control of Penicillium digitatum on grapefruit. Can J Microbiol. 1989;35:794-800.

Droby S, Cohen A, Weiss B, Horev B, Chalutz E, Katz H, Keren-Tzur M, Shachnai A. Commercial testing of aspire: a yeast preparation for the biological control of postharvest decay of citrus. Biol Control. 1998;12:97-100.

Droby S, Vinokur V, Weiss B, Cohen L, Daus A, Goldschmidt EE, Porat R. Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila. Phytopathology. 2002;92(4):393-9.

Ebert B, Halbfeld CM, Blank L. Exploration and Exploitation of the Yeast Volatilome. Curr Metabolomics [Internet]. 2017 [cited 2021 Nov 22];5(2). Doi: 10.2174/2213235X04666160818151119.

Grzegorczyk M, Żarowska B, Restuccia C, Cirvilleri G. Postharvest biocontrol ability of killer yeasts against Monilinia fructigena and Monilinia fructicola on stone fruit. Food Microbiol [Internet]. 2017 [cited 2021 Nov 22];61:93-101. Doi: 10.1016/j.fm.2016.09.005

Hernández-Lauzardo AN, Bautista-Baños S, Velázquez-Del Valle MG, Méndez-Montealvo MG, Sánchez-Rivera MM, Bello-Pérez LA. Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Carbohydr Polym. 2008 [cited 2021 Nov 22];73(4):541-7. Doi: 10.1016/j.carbpol.2007.12.020.

Hernandez-Montiel LG, Gutierrez-Perez ED, Murillo-Amador B, Vero S, Chiquito-Contreras RG, Rincon-Enriquez G. Mechanisms employed by Debaryomyces hansenii in biological control of anthracnose disease on papaya fruit. Postharvest Biol Technol [Internet]. 2018 [cited 2021 Nov 22];139:31-7. Doi: 10.1016/j.postharvbio.2018.01.015.

Hernández-Montiel LG, Holguín-Peña RJ, Larralde-Corona CP, Zulueta-Rodríguez R, Rueda-Puente E, Moreno-Legorreta M. Effect of inoculum size of yeast Debaryomyces hansenii to control Penicillium italicum on Mexican lime (Citrus aurantiifolia) during storage. CyTA - J Food [Internet]. 2012 [cited 2021 Nov 22];10(3):235-42. Doi: 10.1080/19476337.2011.633350.

Hernandez-Montiel LG, Holguín-Peña RJ, López-Aburto MG, Troyo-Diéguez E. Control poscosecha de Geotrichum citri-aurantii en limón mexicano (Citrus aurantifolia [Christm.] Swingle) mediante levaduras marinas y epífitas. Universidad y ciencia. 2011;27(2):191-8.

Hernández-Montiel LG, Ochoa JL, Troyo-Diéguez E, Larralde-Corona CP. Biocontrol of postharvest blue mold (Penicillium italicum Wehmer) on Mexican lime by marine and citrus Debaryomyces hansenii isolates. Postharvest Biol Technol. 2010;56:181-7.

Huang R, Li GQ, Zhang J, Yang L, Che HJ, Jiang DH, Huang HC. Control of postharvest botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology. 2011;101(7):859-69.

Jurick WM, Kou LP, Gaskins VL, Luo YG. First Report of Alternaria alternata Causing Postharvest Decay on Apple Fruit During Cold Storage in Pennsylvania. Plant Dis [Internet]. 2014 [cited 2021 Nov 22];98(5):690. Doi: 10.1094/PDIS-08-13-0817-PDN.

Köhl J, Kolnaar R, Ravensberg WJ. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci [Internet]. 2019 [cited 2021 Nov 22];10:845. Doi: 10.3389/fpls.2019.00845.

Kou LP, Gaskins VL, Luo YG, Jurick WM. First Report of Alternaria tenuissima Causing Postharvest Decay on Apple Fruit from Cold Storage in the United States. Plant Dis [Internet]. 2014 [cited 2021 Nov 22];98(5):690. Doi: 10.1094/PDIS-07-13-0802-PDN.

Lima G, Arru S, De Curtis F, Arras G. Influence of antagonist, host fruit and pathogen on the biological control of postharvest fungal diseases by yeast. J Ind Microbiol Biotechnol. 1999;23:223-9.

Liu J, Sui Y, Wisniewski M, Xie Z, Liu Y, You Y, Zhang X, Sun Z, Li W, Li Y, Wang Q. The impact of the postharvest environment on the viability and virulence of decay fungi. Crit Rev Food Sci Nutr [Internet]. 2018 [2021 Nov 22];58(10):1681-7. Doi: 10.1080/10408398.2017.1279122.

Mari M, Martini C, Spadoni A, Rouissi W, Bertolini P. Biocontrol of apple postharvest decay by Aureobasidium pullulans. Postharvest Biol Technol. 2012;(73):56-62.

Martinez A, Cavello I, Garmendia G, Rufo C, Cavalitto S, Vero S. Yeasts from sub-Antarctic region: biodiversity, enzymatic activities and their potential as oleaginous microorganisms. Extremophiles. 2016;20(5):759-69.

Ming X, Wang Y, Sui Y. Pretreatment of the Antagonistic Yeast, Debaryomyces hansenii, With Mannitol and Sorbitol Improves Stress Tolerance and Biocontrol Efficacy. Front Microbiol [Internet]. 2020 [cited 2021 Nov 22];11. Doi: 10.3389/fmicb.2020.00601.

Mohamed H, Saad A. The biocontrol of postharvest disease (Botryodiplodia theobromae) of guava (Psidium guajava L.) by the application of yeast strains. Postharvest Biol Technol [Internet]. 2009 [cited 2021 Nov 22];53(3):123-30. Doi: 10.1016/j.postharvbio.2009.04.001.

Nava I. Demostración de la actividad quitina desacetilasa en Bacillus thuringiensis. México (DF): Instituo Politécnico Nacional; 2009. 67p.

Padilla B, Manzanares P, Belloch C. Yeast species and genetic heterogeneity within Debaryomyces hansenii along the ripening process of traditional ewes’ and goats’ cheeses. Food Microbiol [Internet]. 2014 [cited 2021 Nov 22];38:160-6. Doi: 10.1016/j.fm.2013.09.002.

Pedrido ME, de Oña P, Ramirez W, Leñini C, Goñi A, Grau R. Spo0A links de novo fatty acid synthesis to sporulation and biofilm development in Bacillus subtilis. Mol Microbiol. 2013;87:348-67.

Petersen KM, Jespersen L. Genetic diversity of the species Debaryomyces hansenii and the use of chromosome polymorphism for typing of strains isolated from surface-ripened cheeses. J Appl Microbiol [Internet]. 2004 [cited 2021 Nov 22];97(1):205-13. Doi: 10.1111/j.1365-2672.2004.02293.x.

Pianzzola MJ, Moscatelli M, Vero S. Characterization of Penicillium Isolates Associated with Blue Mold on Apple in Uruguay. Plant Dis [Internet]. 2004 [cited 2021 Nov 22];88(1):23-8. Doi: 10.1094/PDIS.2004.88.1.23.

Romanazzi G, Smilanick JL, Feliziani E, Droby S. Integrated management of postharvest gray mold on fruit crops. Postharvest Biol Technol [Internet]. 2016 [cited 2021 Nov 22];113:69-76. Doi: 10.1016/j.postharvbio.2015.11.003.

Romano ML, Gullino ML, Garibaldi A. Evaluation of the sensitivity to several fungicides of post-harvest pathogens in North-western Italy. Meded Fac Land- bouww Univ Gent. 1983;48:591-602.

Ruzicka F, Holá V, Votava M, Tejkalová R. Importance of Biofilm in Candida parapsolpsis and Evaluation of Its Susceptibility to Antifungal Agents by Colorimetric Method. Foia Microbiol. 2007;52(3):209-14.

Santos A, Marquina D, Barroso J, Peinado JM. (16)-beta-D-glucan as the cell wall binding site for Debaryomyces hansenii killer toxin. Lett Appl Microbiol [Internet]. 2002 [cited 2021 Nov 22];34(2):95-9. Doi: 10.1046/j.1472-765x.2002.01053.x.

Schena L, Ippolito A, Zahavi T, Cohen L, Nigro F, Droby S. Genetic diversity and biocontrol activity of Aureobasidium pullulans isolates against postharvest rots. Postharvest Biol Technol [Internet]. 1999 [cited 2021 Nov 22];17(3):189-99. Doi: 10.1016/S0925-5214(99)00036-8.

Schena L, Nigro F, Pentimone I, Ligorio A, Ippolito A. Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biol Technol. 2003;30:209-20.

Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem [Internet]. 1987 [cited 2021 Nov 22];160(1):47-56. Doi: 10.1016/0003-2697(87)90612-9.

Serdani M, Kang J-C, Andersen B, Crous PW. Characterisation of Alternaria species-groups associated with core rot of apples in South Africa. Mycol Res [Internet]. 2002 [cited 2021 Nov 22];106(5):561-9. Doi: 10.1017/S0953756202005993.

Spadaro D, Droby S. Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci Technol [Internet]. 2016 [cited 2021 Nov 22];47:39-49. Doi: 10.1016/j.tifs.2015.11.003.

Taqarort N, Echairi A, Chaussod R, Nouaim R, Boubaker H, Benaoumar AA, Boudyach E. Screening and identification of epiphytic yeasts with potential for biological control of green mold of citrus fruits. World J Microbiol Biotechnol [Internet]. 2008 [cited 2021 Nov 22];24(12):3031-8. Doi: 10.1007/s11274-008-9849-5.

Tongsri V, Sangchote S. Yeast metabolites inhibit banana anthracnose fungus Colletotrichum musae. Asian J Food Agro Ind. 2009;2:807-16.

Vero S, Garmendia G, González MB, Bentancur O, Wisniewski M. Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus × domestica). FEMS Yeast Res. 2013;13:189-99.

Vero S, Mondino P, Burgueño J, Soubes M, Wisniewski M. Characterization of biocontrol activity of two yeast strains from Uruguay against blue mold of apple. Postharvest Biol Technol. 2002;26:91-8.

Wisniewski M, Biles C, Droby S, McLaughlin R, Wilson C, Chalutz E. Mode of action of the postharvest biocontrol yeast, Pichia guilliermondii: I. Characterization of attachment to Botrytis cinerea. Physiol Mol Plant Pathol [Internet]. 1991 [cited 2021 Nov 22];39:245-58. Doi: 10.1016/0885-5765(91)90033-E.

Zajc J, Gostinčar C, Černoša A, Gunde-Cimerman N. Stress-Tolerant Yeasts: Opportunistic Pathogenicity Versus Biocontrol Potential. Genes (Basel) [Internet]. 2019 [cited 2021 Nov 22];10(1):42. Doi: 10.3390/genes10010042.

Zhang X, Li B, Zhang Z, Chen Y, Tian S. Antagonistic Yeasts: A Promising Alternative to Chemical Fungicides for Controlling Postharvest Decay of Fruit. J Fungi [Internet]. 2020 [cited 2021 Nov 22];6(3):158. Doi: 10.3390/jof6030158.

Downloads

Publicado

2022-01-05

Como Citar

1.
Arrarte E, Garmendia G, Wisniewski M, Vero S. Atividade biocontroladora de Debaryomyces hansenii contra o mofo azul em maçã e pêra armazenadas em frio. Agrocienc Urug [Internet]. 5º de janeiro de 2022 [citado 6º de julho de 2024];25(NE2):e839. Disponível em: http://mail.revista.asocolderma.org.co/index.php/agrociencia/article/view/839

Edição

Seção

Seção 2. Sistemas Alimentares Sustentáveis ​​para Frutas e Vegetais
QR Code

Métricas

Métricas do artigo
Vistas abstratas
Visualizações da cozinha
Visualizações de PDF
Visualizações em HTML
Outras visualizações

Artigos mais lidos pelo mesmo(s) autor(es)