Efeito de um aditivo fúngico multiespécie no perfil de fermentação ruminal, de-gradabilidade e cinética de produção de gases

Autores

DOI:

https://doi.org/10.31285/AGRO.28.1214

Palavras-chave:

aditivo multifúngico, cinética in situ, fermentabilidade in vitro

Resumo

Dois experimentos avaliaramo efeito de um complexo fúngico multiespécie (BP, BIOPREMIX MX®, Ruminal Fermentation Tech, Uruguai). No Experimento 1 (E1) avaliou o efeito da adição de BP a uma ração mista total (TMR) no perfil de fermentação ruminal e na cinética de degradação in situ da TMR. No Experimento 2 (E2) avaliou o efeito da adição de BP a diferentes substratos na fermentabilidade in vitro. No E1, 4 vacas Holstein com cânulas ruminais foram aleatoriamente designadas para Controle (TMR com relação volumoso:concentrado 75:25) ou Controle + 120 g/vaca/d de BP (BP) e receberam TMR ad libitum por 30 dias. As mostras de TMR foram incubadas no rúmen para estimar a cinética de degradação in situ. O pH e concentrações de amônia e ácidos graxos voláteis (VFA) foram medidas no líquido ruminal imediatamente antes da alimentação, 4 horas e 8 horas após a alimentação. Em E2, um arranjo fatorial de níveis de BP (6,5 g BP/ kg MS incubado –WBP ou sem BP -Control) e 8 substratos. Foram estimadas a cinética de produção de gases in vitro (GPk), a digestibilidade da matéria seca (IVDMD), o potencial metanogênico (CH4), o fator de partição (FP), os AGV e a proteína microbiana (MCP). O BP aumentou a proporção de propionato (P ≤ 0,05) e reduziu a relação cetogênico:glicogênico e a fase Lag da FDN (P ≤ 0,05). O WBP tendeuaaumentara IVDMD e o substrato afetou, IVDMD, CH4, PF, VFA total e MCP (P ≤ 0,01). No geral, BP melhorou o metabolismo ruminal favorecendo um perfil mais glicogênico, um encurtamento da fase Lag na degradação da FDN e um aumento na IVDMD.

Downloads

Não há dados estatísticos.

Referências

Adesogan AT. Using dietary additives to manipulate rumen fermentation and improve nutrient utilization and animal performance. In: 20th Florida Ruminant Nutrition Symposium [Internet]. Gainesville: University of Florida; 2009 [cited 2024 Feb 26]. p. 13-38. Available from: https://animal.ifas.ufl.edu/apps/dairymedia/rns/2009/Adesogan.pdf

Adesogan AT, Ma ZX, Romero JJ, Arriola KG. Improving cell wall digestion and animal performance with fibrolytic enzymes. J Anim Sci. 2014;92:1317-30. Doi: 10.2527/jas.2013-7273. DOI: https://doi.org/10.2527/jas.2013-7273

Al-Masri MR. An in vitro evaluation of some unconventional ruminant feeds in terms of the organic matter digestibility, energy and microbial biomass. Trop Anim Health Prod. 2003;35:155-67. Doi: 10.1023/a:1022877603010. DOI: https://doi.org/10.1023/A:1022877603010

Arriola KG, Kim SC, Staples CR, Adesogan AT. Effect of fibrolytic enzyme application to low- and high-concentrate diets on the performance of lactating dairy cattle. J Dairy Sci. 2011; 94:832-41. Doi: 10.3168/jds.2010-3424. DOI: https://doi.org/10.3168/jds.2010-3424

Arriola KG, Oliveira AS, Ma ZX, Lean J, Giurcanu MC, Adesogan AT. A meta-analysis on the effect of dietary application of exogenous fibrolytic enzymes on the performance of dairy cows. J Dairy Sci. 2017;100(6):4513–27.doi: 10.3168/jds.2016- 12103. DOI: https://doi.org/10.3168/jds.2016-12103

Association of Official Analytical Chemist. Official methods of analysis of the Association of Official Analytical Chemists. 15th ed. Arlington: AOAC; 1990. 3v.

Attaelmannan MA, Dahl AA, Reid RS. Analysis of volatile fatty acids in rumen fluid by proton NMR spectroscopy. Can J Anim Sci. 1999;79(3):401-4. DOI: https://doi.org/10.4141/A99-013

Aydin G, Grant RJ, O'rear J. Brown Midrib Sorghum in diets for lactating dairy cows. J Dairy Sci. 1999;82:2127-35. Doi: 10.3168/jds.S0022-0302(99)75456-1. DOI: https://doi.org/10.3168/jds.S0022-0302(99)75456-1

Beauchemin KA, Colombatto D, Morgavi DP. A rationale for the development of feed enzyme products for ruminants. Can J Anim Sci. 2004;84:23-36. Doi: 10.4141/A02-103. DOI: https://doi.org/10.4141/A02-103

Beauchemin KA, Yang WZ, Rode LM. Effects of grain source and enzyme additive on site and extent of nutrient digestion in dairy cows. J Dairy Sci. 1999;82:378-90. Doi: 10.3168/jds.S0022-0302(99)75244-6. DOI: https://doi.org/10.3168/jds.S0022-0302(99)75244-6

Benaddou M, Hajjaj H, Diouri M. Eco-Friendly Utilization of Coproducts- Enhancing Ruminant Feed Digestibility through Synergistic Fungal Co-inoculation with Fusarium solani, Fusarium oxysporum and Penicillium chrysogenum. Ecol Eng Environ Technol. 2023;24:120-32. Doi: 10.12912/27197050/171590. DOI: https://doi.org/10.12912/27197050/171590

Blummel M, Steingss H, Becker K. The relationship between in vitro gas production, in vitro microbial biomass yield, and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. Brit J Nutr. 1997;77:911-21. Doi: 10.1079/bjn19970089. DOI: https://doi.org/10.1079/BJN19970089

Chaney AL, Marbach EP. Modified reagents for determination of urea and ammonia. Clin Chem. 1962;8(2):130-2. DOI: https://doi.org/10.1093/clinchem/8.2.130

Edmonson AJ, Lean IJ, Weaver LD, Farver T, Webster G. A body condition scoring chart for Holstein dairy cows. J Dairy Sci. 1989;72:68-78. Doi: 10.3168/jds.S0022-0302(89)79081-0. DOI: https://doi.org/10.3168/jds.S0022-0302(89)79081-0

Elghandour MY, Vázquez JC, Salem AZM, Kholif AE, Martínez JS, Camacho LM, Cerrillo-Soto MA. Effects of saccharomyces cerevisiae at direct addition or pre-incubation on in vitro gas production kinetics and degradability of four fibrous feeds. Ital J Anim Sci. 2014;13(2):295-301. Doi: 10.4081/ijas.2014.3075. DOI: https://doi.org/10.4081/ijas.2014.3075

FAO. FAOSTAT [Internet]. Rome: FAO; [cited 2024 Feb 26]. Available from: http://www.fao.org/faostat/es/#data/FBS

France J, Dijkstra J, Dhanoa MS, Lopez S, Bannink A. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations. Brit J Nutr. 2000;83:143-50. Doi: 10.1017/s0007114500000180. DOI: https://doi.org/10.1017/S0007114500000180

Freiria L, Zervoudakis J, Paula N, Cabral L, Tedeschi L, Silva P, Melo A, Possamai A. Exogenous enzyme on in vitro gas production and ruminal fermentation of diet containing high level of concentrate. Rev Bras Saúde Prod Anim. 2018;19:287-300. Doi: 10.1590/S1519-99402018000300006. DOI: https://doi.org/10.1590/s1519-99402018000300006

Gado HM, Salem AZM, Robinson PH, Hassan M. Influence of exogenous enzymes on nutrient digestibility, extent of ruminal fermentation as well as milk production and composition in dairy cows. Anim Feed Sci Tech. 2009;154:36-46. Doi: 10.1016/j.anifeedsci.2009.07.006. DOI: https://doi.org/10.1016/j.anifeedsci.2009.07.006

Gandra JR, Miranda GA, Goes RH, Takiya CS, Del Valle TA, Oliveira ER, Freitas JJ, Gandra ER, Arakia HM, Santos AL. Fibrolytic enzyme supplementation through ruminal bolus na eating silage or sugarcane silage- based diets. Anim Feed Sci Technol. 2017;231:29-37. Doi: 10.1016/j. anifeedsci.2017.06.009. DOI: https://doi.org/10.1016/j.anifeedsci.2017.06.009

Getachew G, Blummel M, Makkar HPS, Becher K. In vitro gas measuring technique for assessment of nutritional quality of feeds: a review. Anim Feed Sci Technol. 1998;72:261-81. Doi: 10.1016/S0377-8401(97)00189-2. DOI: https://doi.org/10.1016/S0377-8401(97)00189-2

Getachew G, Makkar HPS, Becker K. Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. J Agri Sci. 2002;139:341-52. Doi: 10.1017S0021859602002393. DOI: https://doi.org/10.1017/S0021859602002393

Getachew G, Robinson PH, De Peters EJ, Taylor SJ. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminants feed. Anim Feed SciTechnol. 2004;111:57-71. Doi: 10.1016/S0377-8401(03)00217-7. DOI: https://doi.org/10.1016/S0377-8401(03)00217-7

Goering HK, Van Soest PJ. Forage fiber analysis (apparatus reagents, procedures, and some applications). Washington: USDA; 1970. 20p.

Martins LF, Oh J, Harper M, Melgar A, Räisänen SE, Chen X, Nedelkov K, Karnezos TP, Hristov AN. Effects of an exogenous enzyme preparation extracted from a mixed culture of Aspergillus spp. on lactational performance, metabolism, and digestibility in primiparous and multiparous cows. J Dairy Sci. 2022;105:7344-53. Doi: 10.3168/jds.2022-21990. DOI: https://doi.org/10.3168/jds.2022-21990

Mattiauda DA, Tamminga S, Gibb MJ, Soca P, Bentancur O, Chilibroste P. Restricting access time at pasture and time of grazing allocation for Holstein dairy cows: Ingestive behaviour, dry matter intake and milk production. Livest Sci. 2013;152:53-62. Doi: 10.1016/j.livsci.2012.12.010. DOI: https://doi.org/10.1016/j.livsci.2012.12.010

McAllister TA, Bae HD, Jones GA, Cheng LJ. Microbial attachment and feed digestion in the rumen. J Dairy Sci. 1994;72:3004-18. Doi: 10.2527/1194.72113004x. DOI: https://doi.org/10.2527/1994.72113004x

Meale SJ, Beauchemin KA, Hristov AN, Chaves AV, McAllister TA. Opportunities and challenges in using exogenous enzymes to improve ruminant production. J Animal Sci. 2014;92(2):427-42. Doi: 10.2527/jas.2013-6869. DOI: https://doi.org/10.2527/jas.2013-6869

National Research Council. Nutrient Requirements of Dairy Cattle. 7th ed. Washington: National Academy of Sciences; 2001. 381p.

Orskov ER, Hovell FD, Mould F. The use of the nylon bag technique for the evaluation of feedstuffs. Tropical Animal Production. 1980;5:195-213.

Restle J, Neumann M, Brondadi IL, Alves Filho DC, Carvalho RA, Ziegler M, Pereira JR. Manipulação do corte do sorgo (Sorghum bicolor (L.) Moench) para confecção de silagem, visando a produção do novilho superprecoce. R Bras Zootec. 2002;31:1481-90. Doi: 10.1590/S1516-35982002000600020. DOI: https://doi.org/10.1590/S1516-35982002000600020

Romero JJ, Ma ZX, Gonzalez CF, Adesogan AT. Effect of adding cofactors to exogenous fibrolytic enzymes on pre- ingestive hydrolysis, in vitro digestibility and fermentation of bermudagrass haylage. J Dairy Sci. 2015;98:4659-72. Doi: 10.3168/jds.2014-8849. DOI: https://doi.org/10.3168/jds.2014-8849

Romero JJ, Macias EG, Ma ZX, Martins RM, Staples CR, Beauchemin KA, Adesogan AT. Improving the performance of dairy cattle with a xylanase-rich exogenous enzyme preparation. J Dairy Sci. 2016;99:3486-96. Doi: 10.3168/jds.2015-10082. DOI: https://doi.org/10.3168/jds.2015-10082

Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol. 1994;48:185-97. Doi: 10.1016/0377-840(94)90171. DOI: https://doi.org/10.1016/0377-8401(94)90171-6

Tirado-González DN, Miranda-Romero LA, Ruíz-Flores A, Medina-Cúellar SE, Ramírez-Valverde R, Tirado-Estrada G. Meta-analysis: effects of exogenous fibrolytic enzymes in ruminant diets. J Appl Anim Res. 2018;46:771-83. Doi: 10.1080/ 09712119.2017.1399135. DOI: https://doi.org/10.1080/09712119.2017.1399135

Tirado-Gonzalez DN, Tirado-Estrada G, Miranda-Romero LA, Ramírez-Valverde R, Medina-Cúellar SE, Salem AZ. Effects of addition of Exogenous fibrolytic enzymes on digestibility and milk and meat production: a systematic review. Ann Anim Sci. 2021;21:1159-92. Doi: 10.2478/aoas-2021-0001. DOI: https://doi.org/10.2478/aoas-2021-0001

Tricarico JM, Johnston JD, Dawson KA, Hanson KC, McLeod KR, Harmon DL. The effects of an Aspergillus oryzae extract containing alpha-amylase activity on ruminal fermentation and milk production in lactating Holstein cows. Anim Sci. 2005;81:365-74. Doi: 10.1079/ASC50410365. DOI: https://doi.org/10.1079/ASC50410365

Trujillo AI, Bruni M, Chilibroste P. Nutrient content and nutrient availability of sorghum wet distiller’s grain in comparison with the parental grain for ruminants. J Sci Food Agric. 2017;97:2353-57. Doi: 10.10002/jsfa.8046. DOI: https://doi.org/10.1002/jsfa.8046

Van Soest PJ. Nutritional ecology of the ruminant. 2nd ed. Ithaca: Comstock Publishing Associates; 1994. 488p. DOI: https://doi.org/10.7591/9781501732355

Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;174:3583-97. Doi: 10.3168/jds.S0022-0302(91)78551-2. DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Yang WZ, Beauchemin KA, Rode LM. Effects of an enzyme feed additive on extent of digestion and milk production of lactating dairy cows. J Dairy Sci. 1999;82(2):391-403. Doi: 10.3168/jds.S0022-0302(99)75245-8. DOI: https://doi.org/10.3168/jds.S0022-0302(99)75245-8

Downloads

Publicado

2024-05-23

Como Citar

1.
María de los Ángeles, Chilibroste P, Casal A, Trujillo AI. Efeito de um aditivo fúngico multiespécie no perfil de fermentação ruminal, de-gradabilidade e cinética de produção de gases. Agrocienc Urug [Internet]. 23º de maio de 2024 [citado 6º de julho de 2024];28(NE1):e1214. Disponível em: http://mail.revista.asocolderma.org.co/index.php/agrociencia/article/view/1214

Edição

Seção

Artigo
QR Code

Métricas

Métricas do artigo
Vistas abstratas
Visualizações da cozinha
Visualizações de PDF
Visualizações em HTML
Outras visualizações

Artigos mais lidos pelo mesmo(s) autor(es)