SanAntonioApp

visualização interativa e repositório de curvas de duração de vazão espacialmente distribuídas do arroio San Antonio - Uruguai

Autores

DOI:

https://doi.org/10.31285/AGRO.26.979

Palavras-chave:

curvas de permanência de vazão, modelo hidrológico distribuído, WFLOW-HBV, bacia de San Antonio, aplicativo de acesso aberto

Resumo

Os projetos de irrigação precisam de informações sobre a quantidade e frequência da vazão do rio para o projeto e dimensionamento do sistema de irrigação. Por um lado, essas informações são obtidas por meio de estações hidrográficas ou modelos hidrológicos. Por outro lado, as estações hidrográficas são escassas e a implementação de modelos hidrológicos é cara, principalmente para pequenos projetos de irrigação. Este trabalho propõe uma metodologia para estimar curvas de permanência de vazão espacialmente distribuídas (FDC, por sua sigla em inglês) e descreve a aplicação interativa e o repositório de acesso aberto SanAntonioApp, que é utilizado para compartilhar os resultados desta pesquisa. A estrutura proposta usa 3 anos de registros de uma rede hidrometeorológica densa para implementar, otimizar e validar o modelo hidrológico distribuído WFLOW-HBV no arroio San Antonio (Salto - Uruguai). Em seguida, os FDCs são gerados estendendo o período de simulação com uma estação agroclimatológica com uma longa série de dados (30 anos). Os resultados deste trabalho ajudam a avaliar a disponibilidade de água na bacia de San Antonio e fornecem informações sobre a frequência com que essa disponibilidade é garantida. Além disso, o aplicativo permite estimar a probabilidade de superação da vazão diária para um determinado mês e local. Esta característica poderia ser usada para estimar a vazão ambiental definida pela atual regulamentação do uso público da água no Uruguai.

Downloads

Não há dados estatísticos.

Referências

Acreman MC, Dunbar MJ. Defining environmental river flow requirements?: a review. Hydrol Earth Syst Sci Discuss. 2004;8(5):861-76. DOI: https://doi.org/10.5194/hess-8-861-2004

Ala-aho P, Soulsby C, Wang H, Tetzlaff D. Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: a minimalist approach to parameterisation. J Hydrol. 2017;547:664-77. DOI: https://doi.org/10.1016/j.jhydrol.2017.02.023

Aprobacion de medidas para que los usos de las aguas publicas aseguren el caudal que permita la proteccion del ambiente y criterios de manejo ambientalmente adecuados de las obras hidraulicas. Decreto N° 368/018 [Internet]. 2018 [cited 2022 Aug 22]. Available from: https://www.impo.com.uy/bases/decretos/368-2018

Arnaud P, Lavabre J, Fouchier C, Diss S, Javelle P. Sensitivity of hydrological models to uncertainty in rainfall input. Hydrol Sci J. 2011;56(3):397-410. DOI: https://doi.org/10.1080/02626667.2011.563742

Arnold JG, Youssef MA, Yen H, White MJ, Sheshukov AY, Sadeghi AM, Moriasi DN, Steiner JL, Amatya DM, Skaggs RW, Haney EB, Jeong J, Arabi M, Gowda PH. Hydrological processes and model representation: impact of soft data on calibration. Trans ASABE. 2015;58(6):1637-60. DOI: https://doi.org/10.13031/trans.58.10726

Arthington AH. Environmental flows: saving rivers in the third millennium. Berkeley: University of California Press; 2012. 424p. DOI: https://doi.org/10.1525/9780520953451

Aznarez C, Jimeno-Sáez P, López-Ballesteros A, Pacheco JP, Senent-Aparicio J. Analysing the impact of climate change on hydrological ecosystem services in Laguna del Sauce (Uruguay) using the SWAT model and remote sensing data. Remote Sens. 2021;13(10):2014. doi:10.3390/rs13102014. DOI: https://doi.org/10.3390/rs13102014

Bergström S. Development and application of a conceptual runoff model for Scandinavian Catchments. Norrköping: Sveriges Meteorologiska OCH Hydrologiska Institut; 1976. 162p. SMHI Rapporter.

Bergström S. The HBV model: its structure and applications. SMHI Reports Hydrology [Internet]. 1992 [cited 2022 Aug 24];(4):32p. Available from: https://www.smhi.se/polopoly_fs/1.83592!/Menu/general/extGroup/attachmentColHold/mainCol1/file/RH_4.pdf

Beven K, Binley A. The future of distributed models: model calibration and uncertainty prediction. Hydrol Process. 1992;6(3):279-98. DOI: https://doi.org/10.1002/hyp.3360060305

Blöschl G, editor. Runoff prediction in ungauged basins: synthesis across processes, places and scales. Cambridge: Cambridge University Press; 2013. 465p. DOI: https://doi.org/10.1017/CBO9781139235761

Brazier RE, Beven KJ, Freer J, Rowan JS. Equifinality and uncertainty in physically based soil erosion models: application of the GLUE methodology to WEPP–the Water Erosion Prediction Project–for sites in the UK and USA. Earth Surf Process Landf. 2000;25(8):825-45. DOI: https://doi.org/10.1002/1096-9837(200008)25:8<825::AID-ESP101>3.0.CO;2-3

Craven J. Python implementation of the HBV Hydrological Model [Internet]. 2021 [cited 2022 Aug 22]. Available from: https://github.com/johnrobertcraven/hbv_hydromodel

Gan Y, Liang XZ, Duan Q, Ye A, Di Z, Hong Y, Li J. A systematic assessment and reduction of parametric uncertainties for a distributed hydrological model. J Hydrol. 2018;564:697-711. DOI: https://doi.org/10.1016/j.jhydrol.2018.07.055

Germann U, Berenguer M, Sempere-Torres D, Zappa M. REAL-Ensemble radar precipitation estimation for hydrology in a mountainous region. Q J R Meteorol Soc. 2009;135(639):445-56. DOI: https://doi.org/10.1002/qj.375

Gupta HV, Kling H, Yilmaz KK, Martinez GF. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J Hydrol. 2009;377(1-2):80-91. DOI: https://doi.org/10.1016/j.jhydrol.2009.08.003

Habib E, Aduvala AV, Meselhe EA. Analysis of radar-rainfall error characteristics and implications for streamflow simulation uncertainty. Hydrol Sci J. 2008;53(3):568-87. DOI: https://doi.org/10.1623/hysj.53.3.568

Hornberger GM, Spear RC. Approach to the preliminary analysis of environmental systems. J Environ Manage. 1981;12:7-18.

HRL. HBV-EDU Hydrologic Model [Internet]. Version 1.0.0.0. 2021 [cited 2022 Aug 22]. Available from: https://www.mathworks.com/matlabcentral/fileexchange/41395-hbv-edu-hydrologic-model

Jayathilake DI, Smith T. Understanding the role of hydrologic model structures on evapotranspiration-driven sensitivity. Hydrol Sci J. 2020;65(9):1474-89. DOI: https://doi.org/10.1080/02626667.2020.1754421

Kavetski D, Kuczera G, Franks SW. Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory. Water Resour Res. 2006;42(3). doi:10.1029/2005WR004376. DOI: https://doi.org/10.1029/2005WR004368

Kling H, Fuchs M, Paulin M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J Hydrol. 2012;424-425:264-77. DOI: https://doi.org/10.1016/j.jhydrol.2012.01.011

Knoben WJM, Freer JE, Woods RA. Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrol Earth Syst Sci. 2019;23(10):4323-31. DOI: https://doi.org/10.5194/hess-23-4323-2019

Lindström G, Johansson B, Persson M, Gardelin M, Bergström S. Development and test of the distributed HBV-96 hydrological model. J Hydrol. 1997;201(1):272-88. DOI: https://doi.org/10.1016/S0022-1694(97)00041-3

Ministerio de Ganadería, Agricultura y Pesca, RENARE (UY). Mapa General de Suelos del Uruguay, según Soil Taxonomy USDA [Internet]. IDEUy. 2001 [cited 2022 Aug 22]. Available from: https://visualizador.ide.uy/geonetwork/srv/api/records/1335f1c8-65eb-46df-8fba-9310a338e692.

Ministerio de Vivienda y Ordenamiento Territorial (UY). Cobertura del suelo [Internet]. Montevideo: MVOTMA; 2011 [cited 2022 Aug 24]. Available from: https://sit.mvotma.gub.uy/geonetwork/srv/spa/catalog.search#/metadata/b8b30f73-67f8-4535-a505-9ac953984159

Molfino JH, Califra A. Agua disponible de las tierras del Uruguay. Montevideo: MGAP; 2001. 13p.

Narbondo S, Gorgoglione A, Crisci M, Chreties C. Enhancing physical similarity approach to predict runoff in ungauged watersheds in sub-tropical regions. Water. 2020;12(2):528. doi:10.3390/w12020528. DOI: https://doi.org/10.3390/w12020528

Navas R. rafaelnavas/SanAntonioApp: SanAntonioApp [Internet]. Zenodo. 2021 [cited 2022 Aug 22]. Available from: https://zenodo.org/record/5223882.

Navas R, Alonso J, Gorgoglione A, Vervoort RW. Identifying climate and human impact trends in streamflow: a case study in Uruguay. Water. 2019;11(7):1433. doi:10.3390/w11071433. DOI: https://doi.org/10.3390/w11071433

Navas R, Delrieu G. Distributed hydrological modeling of floods in the Cévennes-Vivarais region, France: impact of uncertainties related to precipitation estimation and model parameterization. J Hydrol. 2018;565:276-88. DOI: https://doi.org/10.1016/j.jhydrol.2018.08.032

Osuch M, Romanowicz RJ, Booij MJ. The influence of parametric uncertainty on the relationships between HBV model parameters and climatic characteristics. Hydrol Sci J. 2015;60(7-8):1299-316. DOI: https://doi.org/10.1080/02626667.2014.967694

Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci. 2007;11(5):1633-44. DOI: https://doi.org/10.5194/hess-11-1633-2007

Perrin C, Michel C, Andréassian V. Improvement of a parsimonious model for streamflow simulation. J Hydrol. 2003;279(1-4):275-89. DOI: https://doi.org/10.1016/S0022-1694(03)00225-7

Pilgrim DH. Some problems in transferring hydrological relationships between small and large drainage basins and between regions. J Hydrol. 1983;65(1-3):49-72. DOI: https://doi.org/10.1016/0022-1694(83)90210-X

Pushpalatha R, Perrin C, Moine NL, Andréassian V. A review of efficiency criteria suitable for evaluating low-flow simulations. J Hydrol. 2012;420-421:171-82. DOI: https://doi.org/10.1016/j.jhydrol.2011.11.055

R Core Team. R: The R Project for Statistical Computing [Internet]. 2021 [cited 2022 Aug 22]. Available from: https://www.r-project.org/.

Saelthun NR. The Nordic HBV Model [Internet]. [place unknown]: Hydrology Department; 1996 [cited 2022 Aug 22]. 27p. (Publication; nº 7). Available from: https://www.osti.gov/etdeweb/servlets/purl/515690

Sapriza-Azuri G, Gamazo P, Erasun V, Banega R, Poses A, Navas R, Alcoba M, Gosset M. Rainfall estimation by microwave links in Uruguay: first results. Geophys Res Abstr [Internet]. 2019 [cited 2022 Aug 22];21:EGU2019-5229. Available from: https://meetingorganizer.copernicus.org/EGU2019/EGU2019-5229.pdf.

Schellekens J, van Verseveld W, Visser M, hcwinsemius, laurenebouaziz, tanjaeuser, sandercdevries, cthiange, hboisgon, DirkEilander, DanielTollenaar, aweerts, Fedor Baart, Pieter9011, Maarten Pronk, arthur-lutz, ctenvelden, Imme1992, Jansen M. openstreams/wflow: Bug fixes and updates for release 2020.1.2 [Internet]. 2020 Nov 26 [cited 2022 Aug 22]. Available from: https://zenodo.org/record/593510

Schellekens J. The wflow_routing Model — wflow documentation [Internet]. Revision 2c69dde2. 2019 [cited 2022 Aug 22]. Available from: https://wflow.readthedocs.io/en/stable/wflow_routing.html

Silveira L, Gamazo P, Alonso J, Martínez L. Effects of afforestation on groundwater recharge and water budgets in the western region of Uruguay. Hydrol Process. 2016;30(20):3596-608. DOI: https://doi.org/10.1002/hyp.10952

Slater LJ, Thirel G, Harrigan S, Delaigue O, Hurley A, Khouakhi A, Prosdocimi I, Vitolo C, Smith K. Using R in hydrology: a review of recent developments and future directions. Hydrol Earth Syst Sci. 2019;23(7):2939-63. DOI: https://doi.org/10.5194/hess-23-2939-2019

Tegegne G, Park DK, Kim YO. Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. J Hydrol Reg Stud. 2017;14:49­66. DOI: https://doi.org/10.1016/j.ejrh.2017.10.002

Toum E. HBV.IANIGLA: Modular Hydrological Model [Internet]. 2021 [cited 2022 Aug 22]. Available from: https://CRAN.R­project.org/package=HBV.IANIGLA

Vogel RM, Fennessey NM. Flow‐duration curves: I. new interpretation and confidence intervals. J Water Resour Plan Manag. 1994;120(4):485-504. DOI: https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(485)

Wetterhall F. HBV – The most famous hydrological model of all?: An interview with its father: Sten Bergström. HEPEX [Internet]. 2014 Dec 16 [cited 2022 Aug 22]. Available from: https://hepex.inrae.fr/the-hbv-model-40-years-and-counting/

World Meteorological Organization. Manual on stream gauging. Geneva: WMO; 2010. 2p.

Publicado

2022-09-06

Como Citar

1.
Navas R, Erasun V, Banega R, Sapriza G, Saracho A, Gamazo P. SanAntonioApp: visualização interativa e repositório de curvas de duração de vazão espacialmente distribuídas do arroio San Antonio - Uruguai. Agrocienc Urug [Internet]. 6º de setembro de 2022 [citado 6º de julho de 2024];26(2):e979. Disponível em: http://mail.revista.asocolderma.org.co/index.php/agrociencia/article/view/979

Edição

Seção

Natural and environmental resources
QR Code

Métricas

Métricas do artigo
Vistas abstratas
Visualizações da cozinha
Visualizações de PDF
Visualizações em HTML
Outras visualizações

Artigos mais lidos pelo mesmo(s) autor(es)